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Abstract: —The article deals with the cascade nonlinear control of a chemical continuous stirred tank reactor. 

The control is performed in primary and secondary control-loops where the primary controlled output of the 

reactor is a concentration of the main reaction product and the secondary output is the reactant temperature. A 

common control input is the coolant flow rate. The controller in the primary control-loop is a P-controller with 

an adjustable gain. A controller in the secondary control-loop consist of the static nonlinear and the dynamic 

adaptive linear part. The proposed method is verified by control simulations.  

 

 

Keywords: —chemical reactor, cascade control, nonlinear control, external linear model, adaptive control. 

 

1 Introduction 
The cascade control belongs to more complex control 

structures useful for such processes where more 

output variables can be measured and where only one 

input variable is available to the control. Principles of 

the cascade control are described e.g. in [1], [2] and 

[3]. 

Chemical reactors are typical processes suitable for a 

use of the cascade control. In cases of non-isothermal 

reactions, concentrations of the reaction products 

mostly depend on the temperature of reactant. 

Further, it is known that while the reactant 

temperature can be measured almost continuously, 

see, e.g. [4], concentrations are usually measured in 

longer time intervals. Then, the application of the 

cascade control method can lead to good results. In 

this paper, the procedure for the cascade control 

design of a continuous stirred tank chemical reactor 

is presented.  

Continuous stirred tank reactors (CSTRs) are units 

frequently used in chemical industry. From the 

system theory point of view, CSTRs belong to the 

class of nonlinear systems. Their mathematical 

models are described by sets of nonlinear differential 

equations (ODEs). The methods of CSTRs modelling 

and simulation can be found e.g. in [5] and [6].  

In this paper, the CSTR control strategy is based on 

the fact that concentrations of components of 

reactions taking place in the reactor depend on the 

reactant temperature. Then, the main product 

concentration is considered as the primary controlled 

variable, and, the reactant temperature as the 

secondary controlled variable. The coolant flow rate 

represents a common control input. The primary 

controller determining the set point for the secondary 

(inner) control-loop is a P-controller with an 

adjustable gain. For the secondary controller, the 

procedure based on its factorization on linear and  

nonlinear  parts  is  used.  Basic  ideas  of this method 

can be found e.g. in [7] – [9]. The nonlinear static part 

(NSP) is obtained from simulated or measured 

steady-state characteristic of the CSTR, its 

polynomial or exponential approximation, and, 

subsequently, its differentiation. On behalf of 

development of the linear dynamic part (LDP), the 

NSP including the nonlinear model of the CSTR is 

approximated by a CT external linear model (ELM). 

For the CT ELM parameter estimation, the direct 

estimation in terms of filtered variables is used, see 

e.g. [10] –  [13]. The method is based on filtration of 

continuous-time input and output signals where the 

filtered variables have in the s-domain the same 

properties as their non-filtered counterparts. The 

resulting CT controller is derived on the basis of the 

pole placement method, see, e.g. [14] – [17].  Some 

other procedures and methods related to the issue are 

described e.g. in [19] – [23]. The control is tested by 

simulations of nonlinear model of the CSTR with a 

consecutive exothermic reaction. 

 

 

2 Model of the CSTR 
Consider a CSTR with the first order consecutive 

exothermic reaction according to the scheme 

1 2k k

A B C   and with a perfectly mixed cooling 

jacket. Using the usual simplifications, the model of 

the CSTR is described by four nonlinear differential 

equations 

 1
A r r

A A f
r r

dc q q
k c c

dt V V

 
    

 
 (1) 
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dT h q
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 (3) 

 ( ) ( )
( )

c c h
cf c r c

c c p c

dT q A U
T T T T

dt V V c
     (4) 

with initial conditions (0) s
A Ac c , (0) s

B Bc c , 

(0) s
r rT T and (0) s

c cT T . Here, t stands for the time, 

c for concentrations, T for temperatures, V for 

volumes,  for densities, cp for specific heat 

capacities, q for volumetric flow rates, Ah is the heat 

exchange surface area and U is the heat transfer 

coefficient. Subscripts denoted r describe the reactant 

mixture, c the coolant, f the inlet values and the 

superscript s steady-state values. 

 The reaction rates and the reaction heat are 

expressed as 

 0 exp , 1,2
j

j j
r

E
k k j

RT

 
  

 
 (5) 

 1 1 2 2r A Bh h k c h k c   (6) 

where k0 are pre-exponential factors, E are activation 

energies and h are reaction enthalpies. The values of 

parameters, feed values and steady-state values are 

given in Table 1.  

 

Table 1: Parameters and inlet values  

Vr = 1.2 m3 

Vc = 0.64 m3 

r = 985 kg m-3 

c = 998 kg m-3 

cpr = 4.05 kJ kg-1K-1 

cpc = 4.18 kJ kg-1K-1 

Ah = 5.5 m2 

U = 43.5 kJ m-2min-1K-1 

k10 = 5.616 . 1016 min-1 

k20 = 1.128 . 1018 min-1 

h1 = 4.8 . 104 kJ kmol-1 

E1/ R = 13477 K 

E2/ R = 15290 K 

h2 = 2.2 . 104 kJ kmol-1 
s
Afc  = 2.85 kmol m-3 

s
rfT  = 323 K 

s
Bfc = 0 kmol m-3 

s
cfT = 293 K 

s
rq  = 0.08 m3min-1 

 

The desired reaction product is a concentration of the 

component B. 

 

 

3 Control System Design 
A basic scheme of the cascade control is in Fig. 1. 

Here, PC stands for the primary proportional 

controller, LDP for the linear part and NSP for the 

  
Fig. 1: Cascade nonlinear control scheme. 

 

nonlinear part of the secondary controller and CSTR 

for the reactor. 

The control objective is to achieve a concentration of 

the component B as the primary controlled output 

near to its maximum. A dependence of the 

concentration cB on the reactant temperature is in Fig. 

2. 

 
Fig. 2: Steady-state dependence of the product B  

          concentration on the reactant temperature. 

 

There, an operating area consists of two intervals. In 

the first interval, the concentration B increases with 

increasing reactant temperature, in the second 

interval it again decreases. Both intervals are limited 

by the maximum value max
Bc = 1.62 kmol/m2. It can 

be seen that the maximum value of cB can be slightly 

higher then max
Bc . However, with respect to some 

following procedures, the maximum desired value of 

cB will be limited just by max
Bc .  

 

 

4 Primary Controller Design 
The primary P-controller controller realizes the 

relation between the deviation of desired and actual 

concentration cB and the corresponding desired 

reaction temperature according to the equation 

 rw w BwT G c   (7) 

where Gw is an adjustable gain. 

 

 

5 Secondary Controller Desig 
As previously introduced, the secondary controller 
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consist of a nonlinear static and an adaptive linear 

dynamic part. The LDP creates a linear dynamic 

relation  0( ) ( )wu t T t   which represents a 

difference of the reactant temperature adequate to its 

desired value. Then, the NSP generates a static 

nonlinear relation betveen u0 and a corresponding 

increment (decrement) of the coolant flow rate.  

 

5.1 Nonlinear Static Part 
The NSP derivation appears from a simulated or 

measured steady-state characteristics. The 

dependence of the reactant temperature on the 

coolant flow rate is shown in Fig.3. Both intervals are 

in accordance with intervals in Fig.2. 

 

 
Fig. 3: Dependence of the reactant temperature on the 

coolant flow rate in the steady-state. 

 

For purposes of later procedures, the boundaries of 

both intervals are determined as 

 0.12 0.062cq  , 319.58 332.12rT   

in the first operating interval, and, 

 0.049 0.024cq  , 339.1 352.9rT   

in the second operating interval. 

With respect to required approximations, both 

coordinates are transformed as 

 
min

max min

c c

c c

q q

q q






 ,  0,1    (8) 

 
min

max min

r r

r r

T T

T T






 ,  0,1    (9) 

where  
min 0.024cq  ,  max 0.12cq  , min 319.58rT  ,  

max 352.9rT  . 

Then, transformed characteristics in both intervals 

are approximated as 

 0.028 2.1336exp( / 0.2383)      (10) 

In the first interval, and, 

 0.9965 1.6017    (11) 

in the second interval. The characteristics in both 

intervals together with their approximations are 

shown in Figs.4 and 5. 

 

 
Fig. 4: Transformed steady state-characteristics in 

interval 1with approximation. 

 

 
Fig. 5: Transformed steady state-characteristics in 

interval 2 with approximation. 

 

Derivatives of expressions (10) and (11) needed to 

determine the function of the NSP are 

 8.9534exp( )
0.2383

d

d

 


    (12) 

in the first interval, and, 

 1.6017
d

d




   (13)  

in the second interval. 

The relation between input and output of the NPC can 

now be formulated as 

 
max min

0max min
( )

1/

r

c c
c

r r T

q q d
q u

dT T 






 
  

  
 (14) 

where u0 is the output of the LDP and ( )rT je a value 

of ψ according to Tr  on the output of the CSTR. 
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5.2 CT External Linear Model  
The  nonlinear  component  of  the  closed-loop  

consisting of the NSP of the controller and the CSTR 

nonlinear model is approximated  by a  continuous-

time  external  linear model (CT ELM) according to 

Fig. 6.  

 

 
Fig. 6: Control system with CT external linear model.  

 

where rww T  and s
r ry T T  .  

It is well known that in adaptive control the 

controlled process of a higher order can be 

approximated by a linear model of  a  lower order 

with varying parameters. Here, the second order CT 

ELM has been chosen in the form of the second order 

linear differential equation 

 1 0 0 0( ) ( ) ( ) ( )y t a y t a y t b u t    (15) 

and, in the complex domain, as the transfer function 

 0

2
0 1 0

( )
( )

( )

bY s
G s

U s s a s a
 

 
 (16) 

 

5.3 CT ELM Parameter Estimation 
The method of the direct CT ELM parameter 

estimation can be briefly carried out as follows. 

Since the derivatives of both input and output cannot 

be directly measured, filtered variables uf and yf  are 

established as the outputs of filters  

 ( ) ( ) ( )fc u t u t   (17) 

 ( ) ( ) ( )fc y t y t   (18) 

where d dt   is the derivative operator, c() is a 

stable polynomial in  that fulfills the condition 

deg ( ) deg ( )c a  .  

Note that the time constants of  filters must be smaller 

than the time constants of the process. Since the latter 

are unknown at the beginning of the estimation 

procedure, it is necessary to make the filter time 

constants, selected a priori, sufficiently small. 

With regard to (16), the polynomial a takes the 

concrete form 2
1 0( )a a a      , and, the 

polynomial c can be chosen as 2
1 0( )c c c      

. Subsequently, the values of the filtered variables can 

be computed during the control by a solution of (17) 

and (18) using some standard integration method. 

It can be easily proved that the transfer behavior 

among filtered and among nonfiltered variables are 

equivalent. Using the L-transform of (17) and (18), 

the expressions  

 1( ) ( ) ( ) ( )fc s U s U s s   (19)

2( ) ( ) ( ) ( )fc s Y s Y s s   (20) 

can be obtained with 1 and 2 as polynomials of 

initial conditions. Substituting (19) and (20) into 

(16), and, after some manipulations, the relation 

between transforms of the filtered input and output 

takes the form 

 

( )
( ) ( ) ( )

( )

( ) ( ) ( )

f f

f

b s
Y s U s M s

a s

G s U s M s

  

 

 (21) 

where M(s) is a rational function as the transform of 

any function (t) which  expresses an influence of 

initial conditions of filtered variables.  

Now, the filtered variables including their derivatives 

can be sampled from filters (19) and (20) in discrete 

time intervals tk = k TS , k = 0,1,2, ...   where TS is the 

sampling period. Denoting deg a = n and deg b = m, 

the regression vector is defined as 

 

(1) ( 1)

(1) ( )

( ) ( ) ( )... ( )

( ) ( ) ... ( ) 1

n
k f k k kf f

m
f k k kf f

t y t y t y t

u t u t u t

   





Φ
 (22) 

Then, the vector of parameters  

  0 1 1 0 1( ) ... ...T
k n mt a a a b b bΘ  (23) 

can be estimated from the ARX model   

 ( )
( ) ( ) ( ) ( )

n T
k k k kfy t t t t  Θ  (24) 

Here, the recursive identification method with 

exponential and directional forgetting was used 

according to [18]. 

 

 

5.4 Linear Dynamic Part  
For the adaptive control purposes, the 2DOF 

controller is used. It is known that this type of the 

controller often provides smoother control actions 

then a standard feedback controller. The 2DOF 

controller consist of the feedback part Q and the 

feedforward part R as shown in Fig. 7. 
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Fig. 7: The 2DOF controller. 

 

In the scheme, w is the reference signal, y is the 

controlled output and u0 the controller output. The 

reference w is taken into account as a sequence of 

step functions with transforms  

 0( ) k
k

w
W s

s
   (25) 

In this paper, a disturbance is not considered. 

The transfer functions of both controller parts are in 

forms 

 
( ) ( )

( ) , ( )
( ) ( )

r s q s
R s Q s

p s p s
   (26) 

where q, r and p are coprime polynomials in s 

fulfilling the condition of properness  deg degr p  

and  deg degq p . For a step disturbance with the 

transform (28), the polynomial p takes the form 

( ) ( )p s s p s . 

Using the polynomial theory, the controller results 

from a couple of polynomial equations 

 ( ) ( ) ( ) ( ) ( )a s s p s b s q s d s   (27) 

 ( ) ( ) ( ) ( )t s s b s r s d s   (28) 

with a stable polynomial d on their right sides.  

For the transfer function (16) with deg a = 2, the 

controller transfer functions take forms 

 

2
2 1 0

0

0

0

( )
( )

( ) ( )

( )
( )

( ) ( )

q s q s qq s
Q s

s p s s s p

rr s
R s

s p s s s p

 
 



 


 (29) 

Moreover, the equality 0 0r q  can easily be 

obtained. 

The controller parameters then follow from solutions 

of polynomial equations (27) and (28) and depend 

upon coefficients of the polynomial d.  

In this paper, the polynomial d with roots 

determining the closed-loop poles is chosen as 

 2( ) ( )( )d s n s s    (30) 

where n is a stable polynomial obtained by spectral 

factorization 

 ( ) ( ) ( ) ( )a s a s n s n s   (31) 

and  is the selectable parameter that can usually be 

chosen by way of simulation experiments. Note that 

a choice of d in the form (30) provides the control of 

a good quality for aperiodic controlled processes. The 

polynomial n has the form 

 2
1 0( )n s s n s n    (32) 

with coefficients 

 2
0 0n a ,  2

1 1 0 02 2n a n a   . (33) 

The controller parameters can be obtained from 

solution of the matrix equation 

 
1 0

0 0

0

1 0 0 0

0 0

0 0

0 0 0

a b

a b

b

 
 
 
 
 
 



0

2

1

0

p

q

q

q

 
 
 
 
 
 

 = 

3 1

2 0

1

0

d a

d a

d

d

 
 

 
 
 
 

 (34) 

where 

 

2
3 1 2 1 0

2 2
1 0 1 0 0

2 , 2

2 ,

d n d n n

d n n d n

  

  

    

  
. (35) 

Evidently, the controller parameters can be adjusted 

by the selectable parameter .  

 

 

6 Simulation Results 
All simulations were performed on nonlinear model 

of the CSTR. Considering the measurement of the 

concentration cB in periods s (min), the aim of 

simulations is to show an effect of this period and an 

effect of the adjustable gain of the P-controller Gw on 

some control responses. At the start of simulations, 

the P controller with a small gain was used. For the 

direct recursive parameter estimation, the sampling 

period TS = 1 min was chosen. The value of the 

selectable parameter   is stated under each figure.   

In the first case, simulations in the first operating 

interval were performed. Here, all simulations started 

from the point 1.2s
Bc  kmol/m3 and 0.08s

cq 

m3/min. The desired value of cB has been chosen as 

1.6Bwc   kmol/m3   Effect of the parameter Gw on 

the reference w, the reactant temperature Tr and the 

concentration cB responses is evident from Figs. 8, 9 

and 10. 
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Fig. 8: Reference signal courses (s = 10,  = 0.2). 

 

 
Fig. 9: Reactant temperature responses (s = 10,  

            = 0.2). 

 

 
Fig. 10: Concentration cB responses (s = 10,  = 0.2). 

 

 It can be seen that an increasing Gw accelerates both 

signals in the control loop. However, its value is not 

unrestricted and its convenient value should be found 

experimentally. Strong sensitivity of the period s on 

all responses can be seen in Figs.11, 12 and 13. Its 

shortening leads to significant overshoots. These, 

however, can be suppressed by setting a lower gain 

Gw. It should be to realize that s is determined by 

possibilities of measurement. 

Of interest, the coolant flow courses during control 

and under the same conditions can be seen in Fig. 14. 

 
Fig. 11: Reference signal courses (Gw = 1.5,  = 0.2). 

 

 
Fig. 12: Reactant temperature responses (Gw = 1.5,  

              = 0.2). 

 

 
Fig. 13: Concentration cB responses (Gw = 1.5,  

              = 0.2). 

 

 
Fig. 14: Coolant flow rate courses (Gw = 1.5,  = 0.2). 
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Next simulations were performed in the interval 2. 

Here, all simulations started from the point

0.917s
Bc  kmol/m3 and 0.028s

cq  m3/min. An 

effect of selectable parameters Gw and ts is similar as 

in the first interval.  

The adaptive controller parameters depend upon the 

selection of the parameter . An effect of this 

parameter is not very significant and it can be seen in 

Figs. 23 and 24.  

 

 
Fig. 15: Reference signal courses (s = 10,  = 0.1). 

 

 

 
Fig. 16: Reactant temperature responses (s = 10,  

              = 0.1). 

 

 

 
Fig. 17: Concentration cB responses (s = 10,  = 0.1). 

 

 
Fig. 18: Coolant flow rate courses (ts = 1.5,  = 0.1). 

 

 
Fig. 19: Reference signal courses (Gw = 1.2,  = 0.1). 

 

 
Fig. 20: Reactant temperature responses (Gw = 1.2,  

              = 0.1). 

 

 
Fig. 21: Concentration cB responses (Gw = 1.2,  

             = 0.1). 
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Fig. 22: Coolant flow rate courses (ts = 1.5,  = 0.1). 

 

 
Fig. 23: Reactant temperature responses (Gw = 1.2,  

             ts = 10). 

 

 
Fig. 24: Concentration cB responses (Gw = 1.2,  

             ts = 10). 

 

7 Conclusions 
The paper deals with the cascade nonlinear control of 

a continuous stirred tank reactor. The control is 

performed in the external (primary) and inner 

(secondary) closed-loop where the concentration of a 

main product is the primary and the reactant 

temperature the secondary controlled variable. A 

common control input is the coolant flow rate. 

The controller in the external control-loop is a P-

controller with an adjustable gain. The controller in 

the inner control-loop is a nonlinear controller 

consisting of a nonlinear static part and an adaptive 

linear dynamic part in the 2DOF structure. For its 

derivation, the recursive parameter estimation, the 

polynomial approach and the pole placement method 

were applied. 

The control was tested by simulations on the 

nonlinear model of the CSTR. 
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